REPAIR AND STRENGTHENING INTERVENTIONS ON VERTICAL AND HORIZONTAL ELEMENTS

SPEAKER: PROF. CLAUDIO MODENA

DEPARTMENT OF STRUCTURAL & TRANSPORTATIONS ENGINEERING
UNIVERSITY OF PADOVA, ITALY
Contents

- Decisions on intervention.

- The Guidelines of ICOMOS / ISCARSAH Recommendations and the new Italian Guidelines:
 - Application of conservation principles in practice.
 - Prioritization and combination of conservation requirements for the evaluation of the impact of interventions and strengthening operations on the cultural value of monuments and historical constructions.
 - Control and assessment of restored or strengthened constructions.

- Discussion of examples of real cases of intervention on historical constructions:
 - The role of historical research, monitoring and structural analysis in the design and assessment of interventions: the consideration of cultural context.
Analysis and restoration of historic buildings (I)

Restoration was in the past reserved to monumental buildings. Restorers were few experienced professionals who took care for years and sometime for their professional life of the same monument or group of monuments.

After the second world war the historic centers in Italy were left to the poorest and to the immigrants lowering the level of maintenance of historic building.

On the other hand in high schools and universities, teaching of old traditional materials as masonry and wood was substituted by concrete, steel and new high-tech materials.

As frequently happened in the recent past, due to lack of knowledge and of appropriate analytical models, masonry was simply treated as a one material, as homogeneous as concrete, steel, or wood.
Analysis and restoration of historic buildings (II)

The assumption for masonry structures, especially, in seismic areas were that, they should behave like a “box” with stiff floors and stiff connections between the walls, no matter which was their geometry or material composition.

The strengthening project implied the use of the same intervention techniques: substitution of timber-floors and roofs with concrete ones, wall injection by grouts, use of concrete tie beams inserted in the existing walls.
Analysis and restoration of historic buildings (III)

Carefully considering what has been learned from the past and ongoing experiences, new concepts and tools are entering into codes and structural design practice:

- the differentiation of safety level for different classes of existing structures;
- assessment of mechanical properties of structures and materials with no real statistical evaluations (estimation based on limited data);
- global and local models to be used for structural analysis;
- the evaluation of safety based on pure equilibrium considerations;
- the use of qualitative evaluation of structural performances (observational approach: the existing structures as a model of itself);
- formalistic safety verifications: improvement vs retrofitting;
- the limitation of interventions at the minimum possible level, depending on the level of knowledge of the structure and on the use of appropriate investigations/monitoring techniques;
- the removability of the interventions and the compatibility of traditional/modern/innovative materials and construction techniques.
Standards for historical structures

Codes

- **ISO 13822** – bases for design of structures – assessment of existing structures (first edition 2001)

- **Italian code** for the design, assessment and seismic retrofitting of buildings – Chapter 11 (2003)

- **prEN 1998-3 Eurocode 8** – Design of structures for earthquake resistance Part 3 assessment and retrofitting of buildings

Guidelines

- **Iscarsah** Recommendations for the analysis, conservation, and structural restoration of architectural heritage

- **Italian guidelines** for the assessment and the reduction of seismic risk of cultural heritage
Decisions on intervention (I)

A “to do list” in case of strengthening intervention is not viable, since specific and effective intervention in one case can be ineffective or, even worst, detrimental to the seismic capacity of the structure in other cases.

In order to respect the existing features of the considered constructions special care has to be paid in order to limit in any case as much as possible variations not only of its external appearance, but also of its mechanical behavior.

Attention has to be focused on limiting interventions to a strict minimum, avoiding unnecessary strengthening, a goal that is clearly in agreement with the principles of sustainable development.
Decisions on intervention (II)

Efforts are needed to respond to “conservative” design criteria while intervening to ensure acceptable structural safety conditions of existing historic constructions.

This requires that it is necessary to analyze, theoretically and experimentally, the resisting properties of the considered construction, prior and after interventions are made, in order to avoid over-designing approaches.

The actual contribution of any traditional/innovative material and techniques, and of their possible combinations, can be adequately and scientifically exploited in order to ensure durability, compatibility and possibly removability of repair/strengthening interventions.
Recommendations for the analysis, conservation and structural restoration of architectural heritage

Guidelines

1. General criteria

2. Acquisition of data: Information and Investigation
 2.2 Historical and architectural investigations
 2.3 Investigation of the structure
 2.4 Field research and laboratory testing
 2.5 Monitoring

3. Structural behaviour
 3.1 General aspects
 3.2 The structural scheme and damage
 3.3 Material characteristics and decay processes
 3.4 Actions on the structure and the materials

4. Diagnosis and safety evaluation
 4.1 General aspects
 4.2 Identification of the causes (diagnosis)
 4.3 Safety evaluation
 4.3.1 The problem of safety evaluation
 4.3.2 Historical analysis
 4.3.3 Qualitative analysis
 4.3.4 The quantitative analytical approach
 4.3.5 The experimental approach
 4.4 Judgement on safety

5. Decisions on interventions - The Explanatory Report
Iscarsah Guidelines – Remedial measures and controls

Adequate **maintenance** can limit the need for subsequent intervention.

The basis for conservation and reinforcement must take into account both **safety evaluation** and understanding of **historical / cultural significance** of the structure.

Each intervention should, as far as possible, respect the **original concept and construction techniques**.

Where the application of current design codes would lead to excessive interventions that would involve the loss of historic fabric or historic character, it is necessary to provide adequate safety by alternative means.

Repair is always preferable to replacement.

Dismantling and reassembly should only be undertaken when required by the nature of the materials and structure and when conservation is more damaging.
Iscarsah Guidelines – Remedial measures and controls

The choice between “traditional” and “innovative” techniques should be determined on a case-by-case basis with preference to those that are least invasive and most compatible with heritage values, consistent with the need for safety and durability. When new products are used all possible negative side effects must be considered.

Interventions should not be visible, but when that is impossible the aesthetic impact on the monument has to be carefully considered before taking any final decision.

Where possible, any measures adopted should be “reversible” to allow their removal and replacement with more suitable measures if new knowledge is acquired.

At times the difficulty of evaluating both the safety levels and the possible benefits of interventions may suggest an incremental approach (‘design in process’), beginning with a minimum intervention, with the possible adoption of subsequent supplementary measures.

Any proposal for intervention must be accompanied by a programme of monitoring and control to be carried out, as far as possible, while the work is in progress.
Decisions regarding any interventions should be **made by the team** and take into account both the safety of the structure and considerations of historic character.

The **explanatory report** is a commentary upon the more detailed specialist reports. It needs to be a **critical analysis** of the steps and of the decisions taken by the team.

The purpose is to explain those things that cannot be reduced to calculations, making clear the reliability of the data, the hypotheses used and the **choices made in the design**, showing the obtained improvement in the structural behaviour.

Many of the steps in the process will involve a number of **uncertainties**, which must be explained in the report. Uncertainties include:

- The nature of the structural scheme;
- Knowledge of any weaknesses;
- The properties of the materials;
- The nature of the loading and other actions upon the structure.
Iscarsah Guidelines – Structural damage, material decay and remedial measures

When the causes of decay and damage have been established is it possible to plan the correct implementation of techniques and select the appropriate materials for the conservation. A first important factor in selecting appropriate intervention methods is the type of deformations that the structure has suffered, and in particular whether or not these deformations have stabilised.

A preservation plan may only be developed and applied after completion of a systematic in-field and laboratory examination.
Iscarsah Guidelines – Soil settlements

Often soil settlements have not stabilised and in such cases they are an important and often very complicated phenomena affecting structural behaviour. It is necessary to determine the trend of the phenomena and the consequences of increasing deformations on the structure. A monitoring system is usually necessary.

In general there are two possible course of action:

1 - to eliminate the cause by reducing the effects upon the soil, possibly by stabilising the water table, or to improve the stiffness of the foundations;

2 - to increase the strength of the structure to values sufficient to resist the induced stresses and to provide increased stiffness and continuity.
Iscarsah Guidelines – Masonry buildings

The term masonry refers to stone, brick and earth based construction (i.e. adobe, pisé de terre, cob, etc.). Masonry structures are made of materials that have low tensile strength and may show cracking or separation between elements.

The analysis of masonry requires the identification of the characteristics of the constituents of this composite material: type of stone or brick, and type of mortar.

Masonry structures rely upon the effect of the floors or roofs to distribute lateral loads and so ensure their overall stability: it is important to examine the disposition of such structures and their effective connection to the masonry.

The main causes of damage or collapse are vertical loads; horizontal forces are usually produced by the thrust of arches or vaults and may become dangerous if not balanced by other structural elements (heavy walls and abutments, tie bars...). In seismic areas horizontal forces may become produce extensive damage or collapse.

In-plane lateral loads can cause diagonal cracks or sliding. Out-of-plane or eccentric loads may cause separation of the leaves in a multi-leaf wall or rotation of an entire wall about its base (horizontal cracks at the base might be seen before overturning occurs).
Particularly attention has to be paid to large walls constructed of different kinds of material (cavity walls, rubble filled masonry walls and veneered brick walls with poor quality core): the core material may be less capable of carrying load and it can produce lateral thrusts on the faces. In this type of masonry the external leaves can separate from the core: it is necessary to determine if the facing and the core are acting together or separately.

Various strengthening interventions on walls are available:

- consolidating injection of the wall with grout (the appropriate fluid mortars based on lime, cement or resins depends on the characteristics of materials)
- repointing of the masonry,
- vertical longitudinal or transverse reinforcement,
- removal and replacement of decayed material,
- dismantling and rebuilding, either partially or completely.

Ties made of appropriate materials can be used to improve the load-bearing capacity and stability of the masonry.
Typical of masonry structures are **arches and vaults**: they are compression structures relying on their curvature and the forces at the abutments, allowing the use of materials with low tensile strength.

Structural distress may be associated with **poor execution** (poor bonding of units or low material quality), **inappropriate geometry** for the load distribution or **inadequate strength and stiffness of components** (chains or buttresses that resist the thrusts).

The relationship between load distribution and geometry of the structure needs to be carefully considered if loads (especially **heavy dead loads**) are removed or added.

The main **repair measures** include:
- addition of tie-rods (at the spring level in vaults, along parallel circles in domes);
- construction of buttresses;
- correction of the load distribution (in some cases by adding loads).
Iscarsah Guidelines – Masonry buildings

High-rise buildings such as towers and minarets, are often characterised by high compression stresses. In addition, these structures are further weakened by imperfect connections between the walls, by alterations such as the making or closing of openings. Diaphragms, horizontal tie-bars and chains can improve the ability to resist gravity as well as lateral loads.
Iscarsah Guidelines – Timber

Wood has been used in load-bearing and framed or trussed structures and in composite structures of wood and masonry.

Preliminary operations should be identification of the species, which are differently susceptible to biological attack, and the evaluation of the strength of individual members which is related to the size and distribution of knots and other growth characteristics. Longitudinal cracks parallel to the fibres due to drying shrinkage are not dangerous when their dimensions are small.

Fungal and insect attack are the main sources of damage. In framed timber structures the main problems are related to local failure at the joints. Contact with masonry is often a source of moisture.

Chemical products can protect the wood against biological attack: where reinforcing materials or consolidants are introduced, compatibility must be verified.
Iscarsah Guidelines – Iron and steel

Cast iron and steel are alloys and their susceptibility to corrosion depends upon their composition.

The most vulnerable aspects of iron and steel structures are often their connections where stresses are generally highest, especially at holes for fasteners.

Protection against corrosion of iron and steel requires first the elimination of rust from the surfaces (by sand-blasting, etc.) and then painting the surface with an appropriate product.
REPAIR AND STRENGTHENING INTERVENTIONS

PROF. CLAUDIO MODENA

Repair of ferrous metal structures: research

Tensile tests

\[\sigma^u = 121.45 \text{ MPa} \]

Microhardness tests

- lamellar cast iron
- ductile cast iron
- aluminium alloy
- stainless steel
- carbon fibres

Welding

- Flame spray coatings
- Structural coatings

Not welded elements

Welded elements

Original cast iron

Plate of strengthening material (stainless steel, lamellar or ductile cast iron)

Sheet of strengthening material (aluminium, carbon fibres)

Original cast iron

Flame spray

Bending tests before and after repair

Strengthened area
Guidelines for the assessment and the reduction of seismic risk of cultural heritage

- CHAP. 1: OBJECT OF THE GUIDELINES
- CHAP. 2: SAFETY AND CONSERVATION REQUIREMENTS
- CHAP. 3: SEISMIC ACTION
- CHAP. 4: BUILDING KNOWLEDGE
- CHAP. 5: MODELS FOR SEISMIC SAFETY ASSESSMENT
- CHAP. 6: SEISMIC IMPROVEMENT AND INTERVENTION TECHNIQUES CRITERIA
- CHAP. 7: RESUME OF THE PROCESS

Sequence of the collapse of the vault of the Assisi Basilica during the 1997 earthquake
General principles for existing buildings in Italian seismic code

Upgrading: necessary when
- adding storeys,
- changing use of the building with consequent increase of loads >20%,
- substantially changing the building shape
- substantially changing the building structural behaviour

Improvement: possible when
- acting on single structural elements
- acting on monumental buildings

The obligatoriety of **safety evaluation for upgrading intervention** and the necessity of some kind of **evaluation for the improvements** is stated.

The **degree of uncertainty which affects the safety evaluations** of existing buildings and the design of the interventions is taken into account through the use of **confidence factors**: in fact the use of methods of analysis and assessment depends on the completeness and reliability of available information.
Example of seismic improvement: cultural heritage building

<table>
<thead>
<tr>
<th>Macroelement</th>
<th>Capacity (g) before the intervention</th>
<th>Capacity (g) after the intervention</th>
<th>Increase %</th>
<th>Seismic demand (g) defined by the code</th>
<th>Capacity / Demand (%) after the intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Façade F1</td>
<td>0.083</td>
<td>0.138</td>
<td>66%</td>
<td>0.273</td>
<td>51%</td>
</tr>
<tr>
<td>Façade F2</td>
<td>0.158</td>
<td>0.195</td>
<td>23%</td>
<td>0.280</td>
<td>70%</td>
</tr>
<tr>
<td>Upper façade F1</td>
<td>0.322</td>
<td>0.536</td>
<td>67%</td>
<td>0.375</td>
<td>143%</td>
</tr>
<tr>
<td>Apse A1</td>
<td>0.223</td>
<td>0.362</td>
<td>62%</td>
<td>0.289</td>
<td>125%</td>
</tr>
<tr>
<td>Apse A2</td>
<td>0.158</td>
<td>0.281</td>
<td>79%</td>
<td>0.277</td>
<td>101%</td>
</tr>
</tbody>
</table>
Example of seismic improvement: the church of S. Maria del Pianto

XVIII Century church by Frigimelica with central plan and some irregularities due to following resets done in the first half of the XX Century.
Example of seismic improvement: the church of S. Maria del Pianto

From the analyses carried out, it was pointed out that the most vulnerable element is the façade, in case of overturning with partial involvement of the lateral walls.

This is also a possible mechanism, due to the presence of corresponding crack pattern close by the façade.

\[M_{st} = 52230 \text{ daN m} \]
\[M_{\text{inst}} = 3984900 \text{ daN m} \]
\[c = 0.0131 \]
Example of seismic improvement: the church of S. Maria del Pianto

Collapse coefficients in the previous state (orange) and simulating bracings (green), installed between 2003 and 2004 on the roof above the façade. This has significantly improved the seismic response of the façade, as shown by the increase of the collapse coefficient for the overturning.
Italian Guidelines – § 1 – Object of the Guidelines

Among the “relevant buildings” the guidelines consider those buildings that collapsing can determine significant damages to the historical and artistic heritage: in these cases the concept of “tight cost constraints” becomes much broader, as in the cost also the loss of artistic and historic values must be taken into account.

The document intend to define the process of knowledge, the methods for seismic risk assessment, the criteria for the design of intervention, according to the New Italian Seismic Code, but adapted to the needs of cultural heritage masonry buildings.

For those buildings it is not required an upgrading to current seismic protection level, but it is possible to proceed with improvement interventions. In this case it is anyway required the assessment of the safety level reached after the intervention: this is useful in order to define the minimum intervention or the need for intervention. For strategic and relevant CHBs, the reduction of seismic protection level related to the improvement cannot be always accepted.

For the conservation of cultural heritage in seismic area, different levels of assessment, with different aims, are foreseen: for these types of evaluation, different analysis tools are made available.
Procedure for the seismic safety assessment

- definition of the seismic action;
- definition of an aseismic protection level;
- obtain an appropriate knowledge of the building and define a correct confidence factor;
- definition of one or more mechanical models of the structure or of some parts of the structure (macro-elements) and use of one or more analysis methods;
- evaluation of safety indexes obtained considering the PGA corresponding to every limit state before and after a compatible intervention of improvement and (quantitative and qualitative) comparison of the reached protection level with the seismic risk and with the use of the building.
- use of appropriate detail rules for the realisation of the interventions (compatibility, durability...).
Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

The seismic upgrading is *not compulsory*: what is required is a comparison between the current safety level and the safety level after the intervention, adopting a protection level (γ_1 factor) that varies according to the relevance and the use of the building, and that is used to reduce or increase the reference seismic action.

The criteria for the intervention are the same already mentioned, but specific attention has to be paid to *conservation principles*. Besides, a clear understanding of the structural history of the building (type of action, causes of damage, etc.) should set its mark on the design.

Renaissance walls in Padova - Italy
INTERVENTIONS

Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

Intervention should not only be aimed at reaching appropriate safety level of construction, but they should also guarantee:

Compability and durability
Integration or support to existing assessed behaviour
Correct typological behaviour of the building
Use of non-invasive techniques
If possible, reversibility or removeability
Minimization of intervention
The damage obtained during the Umbria-Marche earthquake in 1997 on buildings retrofitted after the 1979 earthquake, together with experimental and theoretical studies carried out, pointed out problems related to poor masonry quality but also underlined the limits of some badly executed strengthening intervention techniques which became very popular and even compulsory according the previous seismic code: they in fact frequently showed scarce performances (injections, jacketing) or even worsened the local/global structural behaviour of existing masonry buildings (jacketing, replacement of flexible floors with stiff floors).
The execution of interventions that locally change the stiffness of the structure has to be adequately evaluated. The *renovation of flexible floors into stiff floors* cause a different distribution of seismic actions that can be favourable/unfavourable and has to be taken into account into the modelling and analysis phases.

It was abandoned the idea that it is possible to confer to each structure a “box” behaviour, by means of indiscriminate “a priori” interventions, considering that, for example, a **stiff R.C. floor is not crucial for the safety of a masonry ordinary building**.

Some effects of the introduction of R.C. elements in masonry existing buildings

The orthogonal walls are not adequately connected each other and to the new R.C. slabs
Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

The experience of the Umbria-Marche earthquake showed the effect of stiffening the horizontal diaphragm by substituting original wooden floors with stiff reinforced concrete floors: traditional techniques, aimed only at reducing excessive deformability of the floors, are now proposed.

Sliding of the roof floor: the masonry is not adequately strengthened

Expulsion of the façade: the tie-beam is supported only by the internal leaf of a multi-leaves masonry: load eccentricity and reduction of the resisting area
Reinforced injection:
- highly invasive
- scarce performances
- adhesion problems

Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

Montesanto (Sellano), 1997
Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

Jacketing:
- scarce transversal connection
- scarce efficacy in the corners
- oxidation problems
- high stiffness
General requirements for interventions:

- **Respect of the functioning of the structure**, generally intervening in well defined areas and avoiding to vary in a significant manner the global stiffness distribution.

- Interventions to be performed only after the **evaluation of their effectiveness** and the impact on the historical construction.

- Interventions have to be **regular and uniform** on the structures. The execution of strengthening interventions on limited portion of the building has to be accurately evaluated (reduction or elimination of vulnerable elements and structural irregularity…) and justified by calculating the effect in terms of variation on the stiffness distribution.

- Particular attention has to be paid also to the **execution phase**, in order to ensure the actual effectiveness of the intervention, because the possible poor execution can cause deterioration of masonry characteristics or worsening of the global behaviour of the building, reducing the global ductility.
REPAIR AND STRENGTHENING INTERVENTIONS

PROF. CLAUDIO MODENA

Italian Guidelines – § 6 – Seismic Improvement and Intervention Techniques Criteria

The guidelines analyse the following **types of interventions**, giving useful indications for the conception and the design of the intervention:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Interventions to improve the connections (walls – floors)</td>
</tr>
<tr>
<td>2.</td>
<td>Interventions to improve the behaviour of arches and vaults</td>
</tr>
<tr>
<td>3.</td>
<td>Interventions to reduce excessive floor deformability</td>
</tr>
<tr>
<td>4.</td>
<td>Interventions on the roof structures</td>
</tr>
<tr>
<td>5.</td>
<td>Interventions to strengthen the masonry walls</td>
</tr>
<tr>
<td>6.</td>
<td>Interventions on pillars and columns</td>
</tr>
<tr>
<td>7.</td>
<td>Interventions to improve connection of non-structural elements</td>
</tr>
<tr>
<td>8.</td>
<td>Interventions on the foundation structures</td>
</tr>
</tbody>
</table>

In the following slides some, **examples of improving and strengthening interventions** realised according with the indications of the guidelines are showed.
Interventions to improve the connections (walls – floors)

The goal is to allow the structure to manifest a **satisfactory global behaviour**, by improving the connections between masonry walls and between these and floors: this may be achieved via the **insertion of ties, confining rings and tie-beams**.

An effective connection between floors and walls is useful since it allows a **better load redistribution** between the different walls and exerts a restraining action towards the walls’ overturning. Considering wooden floors, a satisfactory connection is provided by fasteners anchored on the external face of the wall.
Interventions to improve the connections (walls – floors)

- Anchoring ties
- Reinforcing rings
- Floor/walls connections

Residential buildings, Montesanto (Sellano)
Interventions to improve the connections (walls – floors)
Interventions to improve the connections (walls – floors)

Position of tie-beams
Interventions to improve the behaviour of arches and vaults

Application of FRP laminates to vaults: research

FRP strengthening of brick masonry vault specimens
Interventions to improve the behaviour of arches and vaults
Application of FRP laminates to vaults: examples
Interventions to improve the behaviour of arches and vaults

Application of extrados elements and FRP laminates to vaults: examples

Ducale Palace, Urbino:
- Substitution of the thin “frenelli” (5 cm thick) with solid brick panels (16 cm thick).
- Application to the both sides of CFRP strips to make active the “frenelli” up to their ends.
- Realization of transverse ribs connected to the “frenelli” edges by thin solid brick panels and a CFRP strip on the top.
Interventions to reduce excessive floor deformability

Interventions aimed at the **in-plane stiffening of existing floors** must be carefully evaluated since the horizontal seismic action is transferred to the different masonry walls in function of the floor plane action, depending on its stiffness.

In plane and flexural floors stiffening with ‘dry’ techniques is obtained by providing, at the extrados of the existing floor, a further layer composed by **wooden planks**, with orthogonal direction respect the existing.

The use of **metallic belts** or **FRP strips**, disposed in a crossed pattern and fixed at the extrados of the wooden floor or the use of metallic tie-beams bracings, may improve the stiffening effect.
Interventions to reduce excessive floor deformability

Development of new techniques for wooden floors: research testing and modeling

Stiff floor

Deformable floor
Interventions to reduce excessive floor deformability

Ca’ Duodo, Padova, XV c.
Interventions on the roof structures

Ducale Palace, Urbino

n° 2 barre inox filetate
Ø 8 × 12 mm

Arcarecci

Punte capriata

Chiodo forgiato
L = 14 cm
inserito con preforo

Zappa in legno di rovere

REPAIR AND STRENGTHENING INTERVENTIONS

PROF. CLAUDIO MODENA
Interventions on the roof structures

Arsenale, Venice, XII c.
Interventions to strengthen the masonry walls

Interventions aimed at increasing the masonry strength may be used to re-establish the original mechanical properties lost because of material decay or to upgrade the masonry performance. Techniques used must employ materials with mechanical and chemical-physical properties similar to the original materials.

Interventions should be uniformly distributed (both strength and stiffness).

With opportune cautiousness, suggested techniques are the “scucicucì”, non cement-based mortar grouting, mortar repointing, insertion of “diatoni” (masonry units disposed in a orthogonal direction respect the wall’s plane) or small size tie beams across the wall, with connective function between the wall’s leaves.

Injections technique: example of suitable execution and of problems related to uncorrected execution (e.g. lack of uniformity)
Interventions to strengthen the masonry walls

Grout injections research: grout selection through laboratory tests

Fluidity

Stability

Injectability

Grout injections research: injection on multi-leaf stone walls and calibration of models

\[f_{wc,0} = (V_{ex}/V)\Theta_{ex} f_{ex,k} + (V_{inf}/V)\Theta_{inf} f_{inf,0} \]
Interventions to strengthen the masonry walls

Town Walls, Cittadella:

- local rebuilding
- grout injection
- repointing
Interventions to strengthen the masonry walls

Grout injections: other applications

Castle of Este (Padova, XIV c.)
- local rebuilding
- metallic ties
- injections
- tie-beam at the top of the walls

S. Giustina Monastery Bell Tower (Padova, XIII-XVII c.):
- steel ties and frame
- local rebuilding
- injections
- reinforced repointing

Plan of the area of intervention
Interventions to strengthen the masonry walls

Reinforced repointing experimental researching and modeling: the use of steel bars

Monotonic compression tests:

- steel bars reinforcement (2Ø6mm)
- repointing material:
 - hydraulic lime mortar
 - synthetic resins (2 types)
- one side strengthening
Interventions to strengthen the masonry walls

Reinforced repointing experimental researching and modeling: the use of steel bars

Experimental results:
comparison among the faces after repair

- **FE modeling scheme**
- **Before repair**
- **After repair**

- **Strain [µm/mm]**
- **Stress [MPa]**

- **Princ_1**
 - -1.4666
 - -0.8946
 - -0.3676
 - -0.115
 - -0.025
 - -1.136
 - -1.646
 - -2.146
 - -2.650

• no improvement in the strength of the wall

• reduced dilation of the repaired panels against the not consolidated ones

• reduced dilation of the consolidated faces of the repaired panels

• reduced cracking pattern on the repaired faces against the not repaired one

• reduction of the tensile stresses in the bricks (40%) and absorption by the bars
Interventions to strengthen the masonry walls

Reinforced repointing experimental researching and modeling: the use of steel bars

Creep tests:
- Steel bars reinforcement (2Ø6mm)
- Repointing mortars:
 - polymeric hydraulic lime
 - hydrated lime and pozzolana
- Two sides strengthening with different configurations

![Strengthening case D](image)

original mortar

hydraulic lime mortar with resin

![Strengthening case E](image)

original mortar

hydrated lime and pozzolana

2Ø6 bars
Interventions to strengthen the masonry walls

Reinforced repointing experimental researching and modeling: the use of steel bars

Experimental results:
constant single compression load steps (3^h)

- Diffused cracking pattern
- Reduction of the dilatancy of the walls
- Tertiary creep condition in the strengthened panels achieved for deformations over 70% higher than the original ones
Interventions to strengthen the masonry walls

Reinforced repointing testing and modeling: the use of FRP bars and thin strips

Using innovative materials while ensuring compatibility and removability
Interventions to strengthen the masonry walls

Reinforced repointing: application for the control of long term behavior

S. Sofia Church, Padova, XII c.
Interventions to strengthen the masonry walls

Reinforced repointing: application for the control of long term behavior

The Civic tower of Vicenza, XII-XV c.:
Slender structure with a base section of 6.2x6.5 m and a height of about 82 m, the Tower suffers a substantial out-of-plumb, and a damage characterized by localized deep cracks, diffused micro-cracks and material deterioration.

The interventions:
- grout injections;
- pointing of mortar joints;
- reinforced repointing;
- metallic horizontal reinforcing rings and anchoring ties.
Interventions to strengthen the masonry walls
Reinforced repointing: application for the control of long term behavior

The bell tower of the Cathedral of Monza (XVI c.):

- 70 m tall
- **passing-through large vertical** cracks on some weak portions of the West and East sides (slowly but continuously opening since 1927)
- **wide cracks in the corners** of the tower up top 30m
- damaged zone at a height of 11 to 25 m with a multitude of **very thin and diffused vertical cracks**
- in the heaviest portions of the wall the current state of stress is close to the 70% of the masonry compression strength
Interventions to strengthen the masonry walls

Reinforced repointing: application for the control of long term behavior

Monitoring of the crack pattern 89-97 trend

Decay pattern
Interventions to strengthen the masonry walls

Diffused strengthening interventions design:
- Injections
- “Scuci-Cuci”
- Bed joints reinforcement
- Placement of reinforcing metal rings
- Strengthening of the corners
Interventions to strengthen the masonry walls

Diffused strengthening interventions execution:

- Injections
- “Scuci-Cuci”
- Bed joints reinforcement
- Placement of reinforcing metal rings reinforcing tie-rings at different levels
- Strengthening of the corners
Interventions to strengthen the masonry walls

Application of FRP laminates to walls research: brick masonry wall specimens
Interventions to strengthen the masonry walls

Application of transversal elements and ties to walls research: stone masonry wall

- Improvement in the strength of the wall
- Reduction of the dilatancy of the walls
Interventions on the foundation structures
Interventions on the foundation structures

Town Walls, Cittadella
Introduction of seismic isolation and application to monuments

Seismic isolation of the Statue of Nettuno & Scilla in Messina (Sicily): particular of the support with isolator and SMAD device.
Introduction of seismic isolation and application to monuments

Apagni Church, Perugia

Fonte: Enel-Hydro, ENEA